skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Korntheuer, M"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. This paper describes how intentional and unintentional radio emission from airplanes is recorded with the Radio Neutrino Observatory Greenland (RNO-G). We characterize the received signals and define a procedure to extract a clean set of impulsive signals. These signals are highly suitable for instrument calibration, also for future experiments. A set of signals is used to probe the timing precision of RNO-G in-situ, which is found to match expectations. We also discuss the impact of these signals on the ability to detect neutrinos with RNO-G. 
    more » « less
    Free, publicly-accessible full text available November 1, 2026
  2. The Radio Neutrino Observatory in Greenland (RNO-G) is the first in-ice radio array in the northern hemisphere for the detection of ultra-high energy neutrinos via the coherent radio emission from neutrino-induced particle cascades within the ice. The array is currently in phased construction near Summit Station on the Greenland ice sheet, with 7 stations deployed during the first two boreal summer field seasons of 2021 and 2022. In this paper, we describe the installation and system design of these initial RNO-G stations, and discuss the performance of the array as of summer 2024. 
    more » « less
    Free, publicly-accessible full text available April 1, 2026
  3. Abstract Data collected so far by the Pierre Auger Observatory have enabled major advances in ultra-high energy cosmic ray physics and demonstrated that improved determination of masses of primary cosmic-ray particles, preferably on an event-by-event basis, is necessary for understanding their origin and nature. Improvement in primary mass measurements was the main motivation for the upgrade of the Pierre Auger Observatory, called AugerPrime. As part of this upgrade, scintillator detectors are added to the existing water-Cherenkov surface detector stations. By making use of the differences in detector response to the electromagnetic particles and muons between scintillator and water-Cherenkov detectors, the electromagnetic and muonic components of cosmic-ray air showers can be disentangled. Since the muonic component is sensitive to the primary mass, such combination of detectors provides a powerful way to improve primary mass composition measurements over the original Auger surface detector design. In this paper, the so-called Scintillator Surface Detectors are discussed, including their design characteristics, production process, testing procedure and deployment in the field. 
    more » « less
    Free, publicly-accessible full text available August 1, 2026
  4. Abstract Salient aspects of the commissioning, calibration, and performance of the CMS silicon strip tracker are discussed, drawing on experience during operation with proton-proton collisions delivered by the CERN LHC. The data were obtained with a variety of luminosities. The operating temperature of the strip tracker was changed several times during this period and results are shown as a function of temperature in several cases. Details of the system performance are presented, including occupancy, signal-to-noise ratio, Lorentz angle, and single-hit spatial resolution. Saturation effects in the APV25 readout chip preamplifier observed during early Run 2 are presented, showing the effect on various observables and the subsequent remedy. Studies of radiation effects on the strip tracker are presented both for the optical readout links and the silicon sensors. The observed effects are compared to simulation, where available, and they generally agree well with expectations. 
    more » « less
    Free, publicly-accessible full text available August 1, 2026