Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
The Radio Neutrino Observatory in Greenland (RNO-G) is the first in-ice radio array in the northern hemisphere for the detection of ultra-high energy neutrinos via the coherent radio emission from neutrino-induced particle cascades within the ice. The array is currently in phased construction near Summit Station on the Greenland ice sheet, with 7 stations deployed during the first two boreal summer field seasons of 2021 and 2022. In this paper, we describe the installation and system design of these initial RNO-G stations, and discuss the performance of the array as of summer 2024.more » « lessFree, publicly-accessible full text available April 1, 2026
-
Free, publicly-accessible full text available January 1, 2026
-
Abstract Data collected so far by the Pierre Auger Observatory have enabled major advances in ultra-high energy cosmic ray physics and demonstrated that improved determination of masses of primary cosmic-ray particles, preferably on an event-by-event basis, is necessary for understanding their origin and nature. Improvement in primary mass measurements was the main motivation for the upgrade of the Pierre Auger Observatory, called AugerPrime. As part of this upgrade, scintillator detectors are added to the existing water-Cherenkov surface detector stations. By making use of the differences in detector response to the electromagnetic particles and muons between scintillator and water-Cherenkov detectors, the electromagnetic and muonic components of cosmic-ray air showers can be disentangled. Since the muonic component is sensitive to the primary mass, such combination of detectors provides a powerful way to improve primary mass composition measurements over the original Auger surface detector design. In this paper, the so-called Scintillator Surface Detectors are discussed, including their design characteristics, production process, testing procedure and deployment in the field.more » « lessFree, publicly-accessible full text available August 1, 2026
An official website of the United States government
